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Behavioral/Cognitive

Neural Tuning to Numerosity Relates to Perceptual Tuning
in 3- 6-Year-0ld Children

Alyssa J. Kersey and Jessica F. Cantlon
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627

Neural representations of approximate numerical value, or numerosity, have been observed in the intraparietal sulcus (IPS) in monkeys
and humans, including children. Using functional magnetic resonance imaging, we show that children as young as 3- 4 years old exhibit
neural tuning to cardinal numerosities in the IPS and that their neural responses are accounted for by a model of numerosity coding that
has been used to explain neural responses in the adult IPS. We also found that the sensitivity of children’s neural tuning to number in the
right IPS was comparable to their numerical discrimination sensitivity observed behaviorally, outside of the scanner. Children’s neural
tuning curves in the right IPS were significantly sharper than in the left IPS, indicating that numerical representations are more precise
and mature more rapidly in the right hemisphere than in the left. Further, we show that children’s perceptual sensitivity to numerosity
can be predicted by the development of their neural sensitivity to numerosity. This research provides novel evidence of developmental
continuity in the neural code underlying numerical representation and demonstrates that children’s neural sensitivity to numerosity is
related to their cognitive development.
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Here we test for the existence of neural tuning to numerosity in the developing brain in the youngest sample of children tested with
fMRI to date. Although previous research shows evidence of numerical distance effects in the intraparietal sulcus of the developing
brain, those effects could be explained by patterns of neural activity that do not represent neural tuning to numerosity. These data
provide the first robust evidence that from as early as 3— 4 years of age there is developmental continuity in how the intraparietal
sulcus represents the values of numerosities. Moreover, the study goes beyond previous research by examining the relation
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between neural tuning and perceptual tuning in children.
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Introduction

Numerosity is a fundamental concept that enables humans to
estimate, without counting, the number of items in a set. Within
the first year of life, infants can represent the numerosity of a set
of objects (Jordan and Brannon, 2006a; Izard et al., 2009). How-
ever, infants’ abilities to discriminate numerosities are limited by
the ratio of numerical change between sets (Weber’s law; Xu and
Spelke, 2000; Lipton and Spelke, 2003). This ratio-dependent

Received Jan. 6, 2016; revised Oct. 26, 2016; accepted Nov. 17, 2016.

Author contributions: A.J.K. and J.F.C. designed research; A.J.K. and J.F.C. performed research; A.J.K. and J.F.C.
analyzed data; A.J.K. and J.F.C. wrote the paper.

This work was supported by National Science Foundation (NSF) Graduate Research Fellowship Program Grant
DGE-1419118 to A.J.K., NSF Grant DRL1459625 to J.F.C., National Institutes of Health Grant ROT HD064636 to J.F.C.,
Alfred P. Sloan Foundation Fellowship #220020300 to J.F.C., and the James S. McDonnell Foundation. The authors
thank Pat Weber and the Concepts, Actions, and Objects Lab, especially Santiago Alonso-Diaz, Elon Gaffin-Cahn, and
Julia Yurkovic.

The authors declare no competing financial interests.

Correspondence should be addressed to Jessica F. Cantlon, Department of Brain and Cognitive Sciences, Univer-
sity of Rochester, Rochester, NY 14627. E-mail: jcantlon@rchi.rochester.edu.

DOI:10.1523/JNEUR0SCI.0065-16.2017
Copyright © 2017 the authors  0270-6474/17/370512-11515.00/0

numerical discrimination ability is maintained throughout child-
hood into adulthood and gradually improves with age (Halberda
and Feigenson, 2008).

The human ability to discriminate numerosities is thought
to be evolutionarily primitive. Nonhuman animals discriminate
numerosities with a ratio-dependent precision comparable to that
ofhumans (Cantlon and Brannon, 2006, 2007; Jordan and Brannon,
2006b). In monkeys, single neurons exhibit numerically modulated
tuning functions with a Gaussian shape and a width proportional to
the value they represent (Sawamura et al., 2002; Nieder and Miller,
2003, 2004). In the intraparietal sulcus (IPS), these neurons are
tuned to cardinal numerosities such that their responses peak for
their preferred numerosity and decrease as the numerical quantity
becomes more disparate from the preferred numerosity. Directly
comparing neural and behavioral discrimination functions from
monkeys showed similar sensitivity to numerical differences, sug-
gesting that perceptual and neural representations of number are
directly related (Nieder and Miller, 2003).

The data from monkeys are consistent with the predictions of
a summation coding neural network model proposed to explain
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neural representations of numerosities in humans (Dehaene and
Changeux, 1993). Dehaene and colleagues extended this model
to predict the neural representation of numbers in adult humans
during functional magnetic resonance imaging (fMRI) adapta-
tion (Piazza etal., 2004). They predicted that the collective neural
responses to numerosity changes in an array should depend on
the ratio of numerical change following a peaked tuning function.
Importantly, because this model was tested with fMRI adapta-
tion, the amount of recovery to numerically deviant stimuli was
predicted to follow an inverted Gaussian shape across ratio. In
fact, the pattern of recovery activation to numerical change was
fit by the Gaussian shape predicted by the numerosity detector
model. These tuning curves were found in the IPS, which is con-
sistent with single neuron data from monkeys (Sawamura et al.,
2002; Nieder and Miller, 2004). Several studies have reported
evidence of numerosity tuning in the adult IPS not only for rep-
resentations of sets (Piazza et al., 2004) but also for numerals
and count words (Notebaert et al., 2011; Roggeman et al., 2011;
Holloway et al., 2013; Demeyere et al., 2014) and even fractions
(Jacob and Nieder, 2009). Together these studies show that intra-
parietal tuning curves related to numerical representation are
widespread across tasks in adults.

Neural tuning curves of numerosity representations have never
been shown in children. The only evidence of numerical distance
effects comes from older children (6+ years; Ansari and Dhital,
2006; Cantlon et al., 2009; Holloway and Ansari, 2010; Bugden et
al., 2012). However, numerical distance effects could arise from
neural patterns that do not conform to a tuning curve. Although
previous neuroimaging work finds sensitivity to numerical over
shape processing in posterior regions of the infant brain (Izard et
al., 2008; Libertus et al., 2009; Hyde et al., 2010; Edwards et al.,
2016) and in the IPS of 4-year-old children (Cantlon et al., 2006),
those regions cannot be said to represent cardinal values of nu-
merosities if they do not show numerosity tuning. Understanding
whether IPS neurons show Gaussian tuning to numerosity in young
children is important for determining whether cardinal representa-
tions of numerosities are represented similarly throughout develop-
ment (Nieder and Miller, 2003; Diester and Nieder, 2007; Nieder,
2009; Cantlon, 2012). If neural tuning to numerosity is a fundamen-
tal process in the human IPS then (1) this process should emerge in
early childhood and (2) neural numerosity tuning curves should
parallel perceptual numerosity tuning curves. The precision of chil-
dren’s neural tuning to numerosity may also predict their perceptual
sensitivity to numerosity.

Materials and Methods
Participants. Forty-three typically developing children (3.6—-6.99 years
old; mean age, 5.36 years; 27 females) participated in this study. All
participants had normal or corrected to normal vision and no history of
neurological impairments. The parents of all children gave informed
written consent in accordance with the University of Rochester’s Re-
search Subjects Review Board. Children were excluded from the analyses
due to failure to complete at least one run of the adaptation paradigm
(n = 4), excessive button pressing during the adaptation scans (n = 2;
responding >12% of the trials or >4 times more than expected), a
speech impediment (n = 1), and chance performance at all levels of the
numerical discrimination task (n = 1; see below, Behavioral assessment).
This resulted in a final sample size of 35 children (3.6—6.99 years old;
mean age, 5.45 years; 3 years: n = 3; 4 years: n = 10; 5 years: n = 11; 6
years: n = 11; 22 females). Among those 35 children, the maximum
amount of movement averaged across translation and rotation for an
individual child was <4 mm (3.86 mm; range, 0.84—3.86 mm; for mo-
tion correction methods, see below, Preprocessing).

fMRI session. Before scanning, children were familiarized with the
MRI environment and practiced lying still in a mock scanner. Follow-
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ing the 30 min practice session, children proceeded to the actual MR
scanner where their heads were secured with headphones, foam padding,
and medical tape.

During the MR scanning session, neural activity (BOLD signal) was
measured during one (1 = 9) or two runs (8.4—9 min each) of an adap-
tation paradigm. One high-resolution anatomical scan was also collected
from each participant.

fMRI adaptation paradigm. Dot arrays were presented on a black back-
ground in the top center of the viewing screen. Standard dot arrays
consisted of 16 purple dots (RGB values: 128, 0, 128) each with an area of
500 pixels?. Location and density of the dots varied continuously. Stan-
dard densities randomly varied from 0.00017 to 0.0003 dots per area [in
pixels squared (px?)] of the screen in which the dots were placed. Stan-
dard arrays were presented for 6—38 trials to allow for sufficient neural
adaptation before the deviant dot array. Deviant arrays varied by one of
three dimensions: dot area, number of dots, or dot color. Dot color was
used as a control condition to disentangle recovery to magnitude of the
dots (number and area) from recovery to any sort of perceptual change.
Only one dimension of interest varied at a time to ensure that the result-
ing neural changes could only be attributed to the dimension of interest.
Importantly, this means that although cumulative surface area of the dot
array varied for both numerical and area deviants, the cumulative surface
area changes were matched across the numerosity and area conditions,
allowing us to attribute the differences in response to a particular dimen-
sion. Dot area was represented using the area of the dot in pixels squared.
Color was represented as a binary system in which each of the three RGB
values was either 0 or 128. Area and number of dots varied using large
(1:2) and small (2:3) ratios and their inverses, while color varied based on
the number of changed RGB values, resulting in four alternatives for each
deviant dimension (Table 1). Density for the deviant trials was calculated
by using the average density from the preceding adaptation trials. Each
deviant alternative was presented four times throughout a run, resulting
in 48 deviant trials per run. See Figure 1 for an example adaptation period
and examples of deviant arrays.

Because the adaptation trials were consistent in all aspects except for
density and location, regions that process density and location would not
adapt to the standard arrays, and the resulting neural changes in response
to the deviants must be attributed to the deviant dimension (surface area
of dots, number of dots, or color of dots). All deviant stimuli also had the
average density of the adaptation stimuli from the preceding trials and
thus there should be no increase in activity to deviants based on density.
Although the cumulative area of the dots changed for both the area and
number deviants, the number of dots in the area deviant stimuli was the
same as in the adaptation stimuli, which enabled us to separate the effects
of changes in cumulative area from the effects of changes in number.

All dot arrays were presented for 400 ms with an interstimulus interval
of 800 ms. Dot arrays were generated using Psychtoolbox functions in
Matlab (Psychtoolbox RRID:SCR_002881; Matlab RRID:SCR_001622).
A small smiley-face icon (1.26 cm diameter) was placed in the center of
the dot array to serve as a fixation point. On rare occasion (11 trials; 3%
of total trials), the smiley face winked. To ensure fixation, participants
were instructed to press a button with their right index finger when the
smiley face winked. Two to three adaptation trials were added as a buffer
following each winking face (=6 adaptation trials total).

MR parameters. Whole-brain BOLD imaging was conducted on a 3
tesla Siemens Magnetom Trio scanner with a 12-channel head coil at the
Rochester Center for Brain Imaging. High-resolution structural T1 con-
trast images were acquired using a magnetization-prepared rapid gradi-
ent echo pulse sequence at the start of each session [TR = 2530 ms;
TE = 3.44 ms; flip angle, 7°; FOV, 256 mm; matrix, 256 X 256, 192, or
176 (depending on head size); 1 X 1 X 1 mm sagittal left-to-right slices].

An echo-planar imaging pulse sequence was used for T2* contrast
(TR = 2000 ms; TE = 30 ms; flip angle, 90°; FOV, 256 mm; matrix, 64 X
64; 30 axial oblique slices, parallel to the anterior commissure—posterior
commissure plane; voxel size, 4 X 4 X 4 mm).

Preprocessing. ftMRI data were analyzed using BrainVoyager (Goebel et
al., 2006; RRID:SCR_013057) and in-house scripts drawing on the
BVQX toolbox (RRID:SCR_009532; http://support.brainvoyager.com/
available-tools/52). The first two volumes of functional data in each run
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Table 1. Stimulus dimensions for standard and deviant arrays
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Dot area (px?) Number of dots Color of dots (RGB values) Cumulative area (px?) Density (dots/px?)
Standard array 500 16 Purple (128, 0, 128) 8000 0.00017-0.0003
Area deviant
Small (1.5-ratio) change 333.33 16 Purple (128, 0, 128) 5333.28 Average of preceding standards
750 16 Purple (128, 0, 128) 12,000 Average of preceding standards
Large (2-ratio) change 250 16 Purple (128, 0, 128) 4000 Average of preceding standards
1000 16 Purple (128, 0, 128) 16,000 Average of preceding standards
Number Deviant
Small (1.5-ratio) change 500 12 Purple (128, 0, 128) 6000 Average of preceding standards
500 24 Purple (128, 0, 128) 12,000 Average of preceding standards
Large (2-ratio) change 500 8 Purple (128, 0, 128) 4000 Average of preceding standards
500 32 Purple (128, 0, 128) 16,000 Average of preceding standards
Color deviant
Small (1.5-ratio) change 500 16 Navy (0, 0, 128) 8000 Average of preceding standards
500 16 Maroon (128, 0, 0) 8000 average of preceding standards
Large (2-ratio) change 500 16 Teal (0, 128, 128) 8000 Average of preceding standards
500 16 Olive (128, 128, 0) 8000 Average of preceding standards
DEVIANTS
Number Area Color

Standard Array

\y
Goo,b
S

.5/2 Ratio

.67/1.5 Ratio

Deviant Array

8.4

Figure1.  Example of an adaptation period followed by a numerical deviant. Examples of the three deviant dimensions at large (0.5:2) and small (0.67:1.5) ratios are shown in the upper right.

were discarded before analysis. Preprocessing consisted of slice scan time
correction (cubic spline interpolation), motion correction with respect
to the first volume in the first run, and linear trend removal in the tem-
poral domain (cutoff: two cycles within the run). Functional data were
registered to high-resolution anatomy on a participant-by-participant
basis in native space. Echo-planar and anatomical volumes were then
transformed into Talairach space (Talairach and Tournoux, 1988). Data
were normalized into Talairach space by first aligning images with the
stereotactic axes and then transforming them to the Talairach grid using
a piecewise affine transformation based on manual identification of an-
atomical landmarks. Analyses were performed on preprocessed data in
Talairach space. A Gaussian spatial filter was applied to each volume of
functional data at 1.5 voxels (6 mm) FWHM. Average framewise dis-
placement (Grill-Spector et al., 2008; Power et al., 2012) was regressed for
each subject using their volume-by-volume realignment parameters.
This controls for any increases in signal intensity due to volume-to-
volume changes in motion.

Functional data were then analyzed using the general linear model.
Experimental events were convolved with a standard dual gamma hemo-
dynamic response function. Two models were used to identify the effects
of the adaptation period and the recovery to the deviant conditions. The
model for adaptation consisted of two regressors of interest correspond-
ing to the main effect of adaptation and a parametric effect of adaptation.
The parametric effect of adaptation assigned weights to each trial of
adaptation such that the first three trials of a block of adaptation were

weighted the highest and all remaining trials received a weight one unit
less than the previous trial. Any trial of adaptation during which the
smiley face changed to a wink was not included in the adaptation predic-
tor. In addition, the three trials of adaptation following a wink were also
excluded. Excluding these trials prevented the neural response to the
wink from interfering with the modeling of a monotonically decreasing
effect of adaptation. One regressor of no interest was included for the
button press and an additional six regressors of no interested corre-
sponded to the motion parameters obtained during preprocessing. In the
recovery model, there were 12 regressors of interest that corresponded to
the four deviant alternatives for each of the three deviant conditions. This
model also included seven regressors of no interest: one for the button
press and six for the motion parameters obtained during preprocessing.
Any deviant trial that followed a wink was excluded from its correspond-
ing predictor to ensure that the neural response to the wink did not
interfere with the deviant response.

Analyses of fMRI data. Random effects analyses were used to analyze
the group data. One set of analyses is a whole-brain analysis. The critical
analysis for our hypothesis is a conjunction analyses: an analysis that tests
the conjunction of adaptation and numerosity recovery effects in chil-
dren. A second critical analysis for our hypothesis, also a conjunction
analysis, tests for independence in patterns of numerosity activation
compared with other deviant conditions. For all whole-brain conjunc-
tion analyses, the voxel-level threshold is p < 0.0025, cluster corrected for
multiple comparisons to p << 0.05. In some cases, the individual map data
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Figure 2.  Perceptual tuning curves calculated across all trials from the numerical discrimi-

nation task (black, solid line), across trials with equal cumulative surface area (dark gray, dashed
line), and across trials with equal dot size (light gray, dotted line).

are displayed at a fixed cluster threshold of 25 mm? and voxel level
threshold of p < 0.05 to report the full extent of activation in the indi-
vidual maps that contributed to the conjunction and affirming that any
lack of an effect is not due to a type II error.

A second set of analyses tests whether the model of numerosity encod-
ing previously used by Piazza et al. (2004) to predict neural responses to
numerosity changes in adults also accounts for patterns in neural data
from young children. These critical tests of our neural tuning hypotheses
are region-of-interest (ROI) analyses. The ROIs were defined in two
ways: (1) by extracting individual data from the IPS activation in whole-
brain group conjunction activation to the adaptation and recovery peri-
ods described above and (2) by using a leave-one-out analysis to measure
each child’s numerosity recovery activation within the adaptation region
with an unbiased, independent ROI analysis. Conjunction analyses were
cluster corrected by implementing a Monte Carlo simulation of the acti-
vation patterns. This procedure was modeled after the BrainVoyager
Cluster-Level Statistical Threshold Estimator. However, because the
BrainVoyager thresholding procedure cannot simulate the likelihood
of a cluster size after taking the overlap of two maps, we implemented
our own, similar version, in Matlab using BVQX tools. This enabled us to
accurately calculate a cluster threshold for our analyses. First, two images
of the same size as the contrast maps of interest (58 X 40 X 46 voxels)
were filled with random values along a normal distribution. These images
were then spatially smoothed (FWHM, two voxels), and the values in the
voxels of each image were scaled using the mean and SD of the contrast
values for one of the two original maps (the map of the adaptation effect
for one image and the map of the number-preferring effect for the other
image). This ensured that the randomly generated images had the same
distribution of contrast values as the original maps. Then we took the
overlap of the two randomly generated maps and recorded the sizes of
clusters significant at a voxelwise threshold of p << 0.05. This process was
iterated 10,000 times. After 10,000 iterations, we calculated the probabil-
ity that a cluster of a particular size appeared in a randomly generated
overlap map. The cluster threshold was determined by finding the largest
cluster size with a probability greater than 0.05 and adding one voxel.
This threshold represents the smallest possible cluster size that is unlikely
to be due to chance.

Finally, we conducted analyses relating individual differences in neural
activation to individual differences in behavior. These analyses were con-
ducted on the ROI data. To ensure an unbiased ROI analysis, we used a
leave-one-out procedure described in the Results for all these analyses.

Numerosity-encoding model. The model of numerosity coding that we
used to test for evidence of neural tuning to number in children is the
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model of neural responses to changes in numerosity that predicts adult
neural activity (Piazza et al., 2004). This model for adult neural data
assumes that the neural signal obtained from fMRI is linearly related to
the firing rate of the neurons in a voxel and fits three free parameters: A,
W, and w. In this model (Eq. 1), I represents the neural activation as a ratio
of the deviant array with respect to the standard array, A represents the
product of the baseline neural signal measured by using fMRI (brain
imaging signal) and the underlying baseline amplitude of cell firing, u
represents the baseline brain imaging signal in relation to the rate of
habituation and the rate of recovery from habituation, and w represents
the neural Weber fraction. The A and p parameters scale the predicted
tuning curve model to the range of the observed data. The neural Weber
fraction (w) represents the width of the neural tuning curve. The model
takes the deviant numerosity and habituated (standard) numerosity as
input and then generates the predicted amplitude of recovery activation
at each deviant ratio from the starting model parameters. The model
calculates the average of the observed neural amplitudes at each numer-
ical pair at each ratio across participants before the model is fit. This step
reduces the idiosyncratic noise in the neural (and behavioral) Weber
estimates. The best fit for those data are obtained by using the nonlinear
squares function (nls, “port” algorithm) in R (version 3.1.1; via R-Studio
version 0.98.1073; RRID:SCR_001905) to minimize the nonlinear least-
squares estimates of the three parameters with respect to the observed
data. Fits between predicted and observed neural data were tested using a
traditional goodness-of-fit test. High fits would be expected if the model
well explains the data, particularly if the observed data conform to the
predicted Gaussian shape and width. The model (Eq. 1) is expressed as

follows:
L“g( M geviant )Z
_ Mhabituation

)
e 4w

I(Maeviants Mhabiruation) = X — b

2\ T W

The model and statistics are fully parallel to prior research with adults
(Piazza et al., 2004), which makes our results comparable to the adult
results, to test for developmental continuity in neural mechanisms.

Behavioral assessment. Following the scan, children completed a nu-
merical discrimination task on a touchscreen computer to measure the
acuity of their approximate number system. During the numerical dis-
crimination task, children were shown two ladybugs side by side and
were instructed to touch the ladybug with the most dots. The ladybugs’
backs were constant in size (125,600 px?) across all trials. The dot arrays
presented on the ladybugs’ backs varied in location and number of dots
from 1 to 30. On half of the trials, the dots on the two ladybugs were the
same size (510 px?), and on the other half of the trials the dots were varied
in size such that the cummulative surface area of the dots was the same
(10,300 sz)_ Comparisons were classified as having a small, medium, or
large number of dots and were made across five different ratios: 0.25,
0.33, 0.5, 0.7, and 0.9. Dot densities (average interitem distance) varied
between a large and small density such that half of the time the ladybug
with the most dots had the larger density and half the time it had the
smaller density. Correct answers were equally presented on the left and
right sides of the screen. Numerical discrimination blocks consisted of 30
trials. Four blocks were presented for a total of 120 trials. One child, who
successfully completed the adaptation scans, was excluded for lack of
motivation during the behavioral session, resulting in a final sample size
of 35 children for both the fMRI and behavioral analyses. Individual
Weber fractions were derived by fitting model curves to children’s be-
havioral data. Individual curves were fit using the “optim” function (“L-
BFGS-B” method; w constrained from 0.01 to 2) in R to minimize the
sum of squared error.

Results

Behavioral results: perceptual tuning to numerosity

To assess the acuity of children’s numerical tuning during an
active numerical discrimination task, we measured children’s
performance. Average accuracy across children was 79% (SD,
8%). We derived a group perceptual tuning curve for children’s
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Figure 3. A, B, Numerical tuning curves for a numerosity discrimination task (4) and neural recovery to numerical deviants following adaptation in a passive-viewing fMRI task (B). Data from
children (solid black line) are plotted against data redrawn from adults in a study by Piazza and colleagues (2004) (dashed red line).

performance on the numerical discrimi-
nation task. Children’s mean accuracies
were calculated at each of the ratios in the
numerical discrimination task with re-
spect to the array on the left side of the
screen. To fit these averages to a tuning
curve and calculate a Weber fraction for
the group, we followed the method used
by Piazza et al. (2004) for adults. This re-

vealed a numerical tuning curve with a @ Monotonically
Weber fraction of 0.22 at the group level Decreasing
[R? (coefficient of determination) = 0.99, Adaptation Effe
p < 0.00001, n = 10]. Group perceptual B ips rois

curves were similar across conditions (Fig.
2) with a Weber fraction of 0.20 when the
cumulative surface area was equal and
0.25 when the dot size was equal across the
two arrays being compared.

We compared the children’s behav-
ioral numerosity curve to the behavioral
curve obtained for adults who completed
a similar task (Piazza et al., 2004). The z=45
adult data were rescaled to match the

A Whole-Brain Number Effects

@ Recovery to @ Number Preference: @ Overlap of
Large Changes Number Deviant > All Effects
ct  in Number Color & Area Deviants

y=-52

range of our data from children. Data  Figure4. Adaptation effect, recovery tolarge changes in number, number deviant preference, and the conjunction overlap of
from adults and children were then plot-  allthree effects (p << 0.0001, voxel level for conjunction, A). The IPS ROIs outlined in black survive cluster correction for multiple
ted against each other as shown in Figure comparisonsinaMonte Carlo simulation (p < 0.05, corrected). Additional regions that surpass the cluster correction threshold are

3A. Children’s performance on the nu-
merical discrimination task follows a sim-
ilar pattern to that of adults, but exhibits a
wider deviation than the adult curve,
which is consistent with the conclusion that numerical discrimi-
nation improves between childhood and adulthood.

in volume space (B).

fMRI results
Whole-brain analyses
Adaptation effect. First, we identified regions that showed a
monotonically decreasing effect of adaptation (parametric de-
crease in BOLD signal). This revealed large regions of the parietal
cortex, the ventral temporal cortex, and the inferior frontal cortex
in both hemispheres (Fig. 4, blue). Thus, a substantial swath of
cortex shows a monotonic decrease in neural responses on each
trial to the constant number, surface area, and color arrays.
Recovery from adaptation. To determine where in the brain
children exhibited neural recovery from adaptation during the
presentation of deviant stimuli, we examined neural recovery to
the deviant stimuli that presented large changes in number, sur-
face area, and color (ratio changes of 0.5 and 2). We found re-

listed in Table 2. For display purposes and to disclose the full extent of activation across the brain, the individual maps that
contributed to the conjunction analysis are shown at a voxel threshold of p << 0.05. Cluster threshold, 25 mm 2. IPS ROIs displayed

gions in the bilateral parietal and visual cortex and regions in the
left ventral temporal cortex that significantly responded to
changes in number (Figs. 4, 5, red), visual and parietal regions in
both hemispheres that significantly responded to changes in
color (Fig. 5, yellow), and regions in the left parietal cortex that
significantly responded to changes in surface area (Fig. 5, green).
Furthermore, subregions in both the left and right visual and
parietal cortices responded to both color and number changes
(Fig. 5, orange) and one region in the left postcentral cortex re-
sponded to changes in all three dimensions, though this region
did not survive cluster correction (Fig. 5, navy). These patterns
resemble those previously reported in studies with adults as “dis-
tributed and overlapping” networks for processing information
about number, color, and size (Pinel et al., 2004).

Number preferences. To identify regions that responded signif-
icantly more strongly to changes in number than to changes in
other dimensions, the neural response to numerical changes was
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Figure 5.

hypotheses.

compared with the neural response to changes in area and color
(number deviants > area and color deviants, balanced). This
revealed the number-preferring cortex in the bilateral intrapari-
etal sulcus (Fig. 4, pink).

ROI analyses

Neural tuning in the IPS. To determine whether neural tuning to
number occurs in children, we defined ROIs in the right and left
IPS that showed (1) a monotonically decreasing effect of adapta-
tion and (2) a preference for numerical changes (Fig. 4, green
with black outlines; Table 2).

We extracted beta values from the left and the right IPS to
calculate children’s neural response amplitudes at each of the
numerical deviants (0.5, 0.67, 1, 1.5, and 2; the 1.0 ratio repre-
sents no change in number and was calculated from the average
activation to color and area deviants, which did not vary in num-
ber from the adaptation stimuli). As with the behavioral data,
these values were tested for their fit to a neural tuning curve
following the method used by Piazza et al. (2004; see Materials
and Methods). Neural Weber fractions were obtained from the
model of children’s tuning curves in the right and left IPS. Chil-
dren’s neural Weber fraction in the right IPS was 0.35 (R 2=0.97,
p = 0.003, n = 5 ratios), which was similar to children’s percep-
tual Weber fractions from their behavior (behavioral w = 0.22;
correlation between neural and perceptual tuning curves: r =
0.98, t5, = 8.01, p = 0.004). In the left IPS, the neural tuning
model failed to converge, suggesting that unlike the right IPS, the
left IPS is only weakly tuned to numerosity in children (R* =
0.87; p = 0.02; n = 5 ratios). The similarity between the neural
tuning curve in the left IPS and the perceptual tuning curve was
still high (r = 0.94, t5) = 4.85, p = 0.017), suggesting some
connection to children’s numerical perception. The model fitand
the relation between children’s behavioral and neural tuning,
particularly in the right IPS, shows that both functions are ex-
plained by a common model of numerosity tuning that predicts
Gaussian shape response profiles with similar widths.

Separating the child data by age group (3-year-olds and
4-year-olds vs 5-year-olds and 6-year-olds) revealed that a
strongly tuned Gaussian-shaped curve is observed in even the
youngest children in the right IPS (3—4-year-olds: R*> = 0.85, p =
0.03, n = 5 ratios; 5—6-year-olds: R? = 0.97,p = 0.003,n =5
ratios) and neural responses were only weakly tuned to numer-
osity in the left IPS (3—4-year-olds: R* = 0.77, p = 0.052,n = 5
ratios; 5—-6-year-olds: R* = 0.97, p = 0.003, n = 5 ratios).

@ Color & Number & Area

Neural responses to deviant stimuli show “distributed and overlapping” networks of right (R) and left (L) visual
and parietal cortices (p << 0.0025, voxel level for conjunction; cluster threshold for display purposes only, 25 mm?; regions
outlined in black represent activations at p << 0.05, corrected using a Monte Carlo cluster correction; cluster sizes: number right
hemisphere, 451 mmZ; number left hemisphere, 358 mm % color right hemisphere, 393 mm % color left hemisphere, 304 mm?).
For display purposes, no cluster threshold was applied to the area condition (green and navy) to show that the lack of an effect is not
due to type Il error. Note that displaying the full activation for area deviants in this way is conservative with respect to our
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The neural tuning curves for the left
and right IPS from children are plotted
against the adult data redrawn from Pi-
azza et al. (2004) in Figure 3B. The adult
data from Piazza et al. (2004) were res-
caled to match the amplitude range of the
children’s data by first standardizing the
adult data to a mean of 0 and an SD of 1
and then adding the mean of the chil-
dren’s data and dividing by the SD of the
children’s data. Children’s neural tuning
curves and Weber fractions were more
similar to the adults’ in the right IPS than
in the left IPS. These data suggest that
neural tuning to number matures faster in
the right IPS than in the left IPS.

Next, we examined whether children’s
tuning curves in the IPS were better ex-
plained by a logarithmic scale, as pre-
dicted by either approximate linear—scalar
or logarithmic encoding of numerical values, versus a precisely
linear scale. We tested whether the neural responses to changes in
number could be explained by a precise linear version of the
model of numerosity encoding (Eq. 2). When the neural data
were fit to the precise linear model, the model was found to
converge in both the left and the right IPS. However, goodness-
of-fit tests for the linear model revealed that it only explained
~70% of the variance in neural data (right IPS: R* = 0.76, p =
0.055; left IPS: R* = 0.64, p = 0.09) compared with ~90% of the
variance explained by the logarithmic model (Fig. 6). Equation 2
is expressed as follows:

— 2
(M devians™ Mhabituation)

e 4w?

I(”deviant’ nhuhituation) =A- 1<

2\ mxw

Finally, we used a “leave-one-out” approach to independently
define the ROIs from which to extract each child’s data in order
avoid introducing bias between voxel selection and the extracted
beta values (Kriegeskorte et al., 2009). We individually defined
the regions of the left and right IPS that showed an overlap be-
tween adaptation and a preference for number using 34 (n — 1)
subjects. We then extracted the data from the 35th (left out)
subject. This procedure was iterated 35 times, each time leaving a
different participant out of the analysis.

The leave-one-out approach resulted in independently de-
fined estimates of neural amplitudes for each subject, at each
ratio. Fitting these data to tuning curves based on the response to
number validated the result found in the regions of the IPS de-
fined using a group contrast. Specifically, we reproduced the
same pattern of Weber fractions in the individually defined leave-
one-out ROIs as found in the group-defined ROIs: the right IPS
exhibited sharp tuning to number (w = 0.23; R? = 0.95, p=
0.006, n = 5 ratios) and the left IPS exhibited immature tuning
and did not converge at the group level.

Control Analyses. To ensure that neural tuning was unique to
numerosity, we tested whether the IPS regions that showed nu-
merosity tuning curves in children would also show tuning
curves across the other deviant dimensions (color and area; Fig.
7). We found neither neural tuning to brightness nor to area in
the numerosity-tuned IPS regions as children’s neural responses
to those dimensions were not modulated by color or area ratio in
the numerosity regions (right IPS brightness: R* = 0.08, p = 0.65,
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Table 2. List of cortical regions for the conjunction of the adaptation effect and
numerical deviant preference

Cortical region Hemisphere ~ Numberofvoxels ~ PeakX  PeakV  PeakZ
IPS Right 94 33 —34 49
IPS Left 29 -2 =55 49
Superior temporal gyrus  Right 28 63 —25 13
Insula Left 27 —42 =10 10
Frontal cortex Left 27 —18 n -2
Right IPS Left IPS
25 25
2.0 20
g1.0 <(:J:1 0: (Figure 3B)
05 0.5
05 10 15 20 0’5 10 15 20
Ratio (linear) Ratio (linear)

Figure 6. Linear (precise) versus logarithmic (approximate) coding of numerosity. The log-

arithmic model of numerosity coding (dashed gray lines) provides a better fit to children’s
neural tuning curve than the linear model of numerosity coding (solid black lines).
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Figure 7. No tuning to brightness and area deviants in the left and right IPS regions that
showed numerosity tuning in children.

n = 5 ratios; left IPS brightness: R* = 0.10, p = 0.6, n = 5 ratios;
right IPS area: R* = 0.02, p = 0.82, n = 5 ratios; left IPS area:
R%?=0, p = 1, n = 5 ratios; models for brightness and area in the
right IPS failed to converge and the model for area in the left IPS
resulted in singular convergence). Children’s neural tuning to
numerosity is thus dimension-specific, rather than a general
property of cognitive or neural processing in the IPS. These re-
sults are important to show because they provide information
about the profile of activation in this specific region. However,
they do not represent an independent test of non-numerical tuning
because the region was defined by its activation to numerosity.
Next, we describe an independent test of the specificity of neural
tuning by conducting a whole-brain control analysis of color-
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Figure 8.  Brightness tuning in color-preferring fusiform gyrus (right Talairach peak: 36,
—55, —17; left Talairach peak: —33, —43, —20) and posterior parietal cortex (right Talairach
peak: 36, —59, 46; left Talairach peak: —30, —58, 43).

preferring cortex. We focus on color-preferring regions because there
were substantial color-preferring cortical regions that overlapped
number-preferring regions and virtually no area-preferring
regions.

As apositive control, we identified regions of the bilateral ventral
temporal cortex and the bilateral posterior parietal cortex that
showed both an effect of adaptation and a preference for changes in
color over number and area. We tested whether those color-
preferring regions would show neural tuning to brightness. Fitting
curves to the neural response to color deviants revealed strong neural
tuning to brightness in all four ROIs (Fig. 8). In contrast, the neural
response to numerosity in those color-preferring regions did not
converge on a tuning curve function and resulted in very large We-
ber fractions (numerosity Weber fractions in color-preferring
regions: left fusiform: w = 2.78; right fusiform: w = 2.94; left
posterior parietal cortex: w = 2.23; right posterior parietal
cortex: w = 2.15), suggesting poor tuning to numerosity in
these regions. These results indicate that dimension-specific
neural tuning curves are observed in regions of cortex that
show a preference for processing that dimension in very young
children. Regions that show these patterns for numerosity
tuning are distinct from those of brightness tuning.

Individual variability

To date, numerosity tuning curves have not been fit to neural
data from individual subjects, even in adults, nor have attempts
been made to directly relate measures of perceptual and neural
tuning at the individual level. Most likely this is because the be-
havioral output of perceptual tuning is the result of a combina-
tion of neural responses throughout the entire brain and is
unlikely to be predicted by neural responses from just one small
brain region. Additionally, neural data at the individual subject
level are noisy. Therefore, it is possible that there is no relation, or
only a weak relation, between neural tuning in the IPS and per-
ceptual tuning. Here we present the first evidence of neural tun-
ing to numerosity at the individual level in humans and conduct
exploratory analyses to examine the relation between perceptual
tuning and neural tuning in individual subjects.
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Figure9. Individual tuning curves for children’s behavioral data (black) overlaid with individual tuning curves from their neural data averaged across the right IPS and left IPS (green). Neural data

are from the independent leave-one-out ROIs. Dashed lines indicate cases where the model did not converge (neural data) or where the fitted W parameter maxed out (perceptual data). The w
parameter was constrained to be between 0 and 2 and, in the neural models, . was constrained to be positive.

First, we calculated perceptual and neural tuning curves for
each subject. Neural tuning curves were fit using the optim algo-
rithm in R (L-BFGS-B method to constrain the parameter space
to plausible w, A, and u based on the group data) and were cal-
culated over the independently defined leave-one-out right and
left IPS ROIs. Figure 9 shows each subject’s neural and behavioral
curves. More children showed evidence of neural tuning to nu-
merosity in the right IPS than in the left IPS, which exhibited
more flat curves (for u> 0; right IPS: mean observed/predicted
r = 0.48; range, 0.09-0.93; t test vs 0: £,y = 10.07, p < 0.000001;
binomial test z-ratio = 2.37, p = 0.009; left IPS: mean observed/
predicted r = 0.55; range, 0.55—0.99; t test vs 0: £,y = 10.24, p <
0.000001; binomial test z-ratio, 1.01; p = 0.156). This suggests
that neural tuning curves are evident at the individual level as
measured using fMRI adaptation, but are more consistent across
children in the right IPS than in the left IPS. Across all children,
the neural Weber fraction was significantly higher in the left IPS
than in the right IPS (3, = 2.52, p = 0.017; mean difference,
0.297), which is in line with the higher neural W in the left IPS
observed at the group level.

We derived behavioral Weber fractions at the individual level
by fitting the model of numerosity encoding to each child’s accu-
racy across numerical ratios. Individual behavioral curves con-
verged for all children (mean observed/predicted r = 0.84; range,
0.27-0.99; t test vs 0: t(34) = 34, p < 0.000001). As expected, we
found that numerosity sensitivity increases with age: as age in-
creases, children’s Weber fractions decrease (F, 33 = 11.94,
R%*= 0.27,p = 0.001; age estimate, —0.25, t = —3.46, p = 0.001).
Individual Weber fractions did not differ across trial type (equal
cumulative surface area vs equal dot size, t;,) = 0.25, p = 0.8).
Subsequent analyses were performed collapsing across trial type
(mean behavioral w = 0.25; w range, 0.07—0.65) with data from
children showing evidence of perceptual tuning at the individual
level (u >0, w <2).

To evaluate the degree of similarity between neural and be-
havioral curves at the individual level, we correlated each child’s
neural tuning curve with his/her behavioral curve. T tests versus 0
revealed that these correlations were significant (right IPS: mean
r = 0.93; R range, 0.58—-0.99; t.,,, = 44, p < 0.00001; left IPS:
mean r = 0.88; Rrange, 0.56—0.99; t,5) = 26, p < 0.00001). This
suggests a close relation between children’s neural tuning dur-
ing numerosity adaptation and behavioral discrimination of
numerosity.

Next, we conducted exploratory analyses to test whether chil-
dren’s neural responses to numerical deviants predicted individ-
ual performance on a numerical task. We correlated children’s
neural Weber fractions with their perceptual Weber fractions.
Perceptual Weber fractions were significantly correlated with
neural Weber fractions from the right IPS (r = 0.40, t.,;, = 2.05,
p = 0.056), but not from the left IPS (r = 0.35, ;) = 1.54, p =
0.142; Fig. 10). This relation was unique to Weber fractions as age
was not related to neural Weber fractions (right IPS: r = —0.08,
tos) = —0.393, p = 0.697; left IPS: r = —0.08, £(,0, = —0.334,p =
0.742). Children’s average neural Weber fractions from the right
and left IPS also related to their perceptual Weber fractions
(perceptual W:r = 0.46, t,, = 2.088, p = 0.053; age: r = —0.40,
tae = —1.763,p = 0.097). Thus, both the average w and the right
IPS w alone predicted behavioral w in children. These results
reveal a relation between individual differences in neural Weber
fractions and perceptual Weber fractions.

Discussion

To determine whether nonsymbolic numerosity processing in
early childhood relies on neural computations similar to those
seen in adults, we applied a model of numerosity coding based on
adult neural processes to neural data from 3—6-year-old children.
We found that the adult model explained children’s neural re-
sponses to numerosity in the same neural regions observed in
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Figure 10.  Perceptual Weber fractions versus neural Weber fractions in the right IPS (red)

and left IPS (blue). The dashed line indicates the relation between the perceptual Weber frac-
tions and the average neural Weber fraction (black dots).

adults, suggesting that analog representations of number are a
foundational aspect of nonsymbolic numerosity processing. This
model of neural tuning was tested separately on the youngest
children in our sample, 3—4-year-olds, and accounted for neural
responses even in those children alone. Our data provide the
most robust evidence to date that the neural mechanisms un-
derlying numerosity perception are stable across human devel-
opment. Moreover, the results show that individual variability in
perceptual tuning is related to individual variability in neural
tuning in children. Thus, the IPS can be said to represent the
approximate cardinal values of numerosities in young children
and is a likely source of individual variability in numerosity
perception. Here we discuss the continuities and discontinuities
in neural coding between children and adults and their relation to
numerical development.

A source of neural continuity in numerosity representations
over development is the numerosity code of the right IPS. The
right IPS exhibits adaptation to constant numerosity, recovery in
neural responding for numerical changes, and a neural prefer-
ence for numerosity changes compared with changes along other
dimensions. The right IPS also exhibits a robust tuning curve to
variation in numerical value in children as young as 3—4 years.
Although previous studies have demonstrated evidence of neural
distance effects in older children (Ansari and Dhital, 2006;
Cantlon et al., 2009; Holloway et al., 2010; Bugden et al., 2012;
Vogel et al., 2015), neural distance effects could arise from a
variety of patterns that do not conform to a tuning curve. The
current study is the first to fit a mathematical model of cardinal
numerosity tuning to neural data from children. Neural tuning to
numerosity in the right IPS in children was comparable to adult-
level sensitivity though slightly weaker (w = 0.35 in children vs
0.25 in adults), and paralleled the children’s current degree of
numerical sensitivity in perception at the group level (w = 0.22),
which was comparable to perceptual Weber fractions previously
reported from this age group (Halberda and Feigenson, 2008).
Prior research suggests that numerosity is initially represented on
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a logarithmic scale (approximate) and shifts to a linear (precise)
representation with education and formal training with a sym-
bolic system of numbers (Siegler and Opfer, 2003; Opfer and
Siegler, 2007; Dehaene et al., 2008; Siegler et al., 2009). Our data
show that young children’s pattern of neural tuning to numer-
osity is better explained by a logarithmic representation of
numerosities (90% of variance) compared with a precise linear
representation (70% of variance). Importantly, the same loga-
rithmic model that accounted for children’s perceptual tuning to
numerosity also accounted for neural tuning to numerosity in the
right IPS, implicating a relation between the development of nu-
merosity perception and the numerosity code of the right IPS.

This study finds an important difference between numerical
representation in the right and the left IPS. Unlike adults, whose
neural responses exhibited finer sensitivity in the left IPS com-
pared with the right (Piazza et al., 2004), children’s neural sensi-
tivity in the left IPS was far cruder than their neural sensitivity in
the right IPS. This contrasts with findings from adults where the
neural tuning model of numerosity representation accounted for
neural responses in both the right and left IPS (Piazza et al,,
2004). Hemispheric differences in numerical processing during
early childhood could be an important source of developmental
change in numerical cognition (Cantlon et al., 2006; Ansari,
2008; Hyde et al., 2010). The observation that the right IPS
matures earlier than the left IPS is consistent with previous de-
velopmental work showing more adult-like patterns of number-
related activation in the right IPS compared with the left (Cantlon
et al., 2006; Ansari, 2008; Izard et al., 2008; Libertus et al., 2009;
Holloway and Ansari, 2010; Hyde et al., 2010; Cantlon and Li,
2013; Emerson and Cantlon, 2015). Previous work also indicates
that activation in the left IPS is more related to symbolic mathe-
matics development than the right IPS (Rivera et al., 2005; Ansari
and Dhital, 2006; Rosenberg-Lee et al., 2011; Bugden et al., 2012;
Cantlon and Li, 2013; Emerson and Cantlon, 2015; Vogel et al.,
2015). The current data from younger children suggest that nu-
merosity representation follows separate developmental trajecto-
ries in the right and left hemispheres. Ultimately, in adulthood,
the left IPS exhibits sharper tuning than the right IPS (Piazza et
al., 2004, 2007). One implication of our data, in light of previous
findings, is that numerosity tuning in the left IPS is refined later in
development, during exposure to symbolic numerical concepts.

Although the behavioral and right IPS neural data share ap-
proximately the same inverted Gaussian shape and width and are
explained by a common model, we observed a finer sensitivity in
children’s behavioral responses than in their neural responses, a
pattern that was also seen in previous work with adults (Piazza et
al., 2004). In addition, our data show only a moderate relation
between behavioral and neural Weber fractions at the individual
subject level (r = 0.40). These results suggest that neural Weber
fractions in the IPS from an adaptation task are not a direct,
high-fidelity “read out” of individual perceptual sensitivity. This
could be due to the active versus passive nature of the behavioral
and fMRI tasks. That is, making explicit numerical judgments in
a behavioral task could heighten the sensitivity of the neural
mechanisms that underlie numerosity coding beyond what we
recorded at the neural level from the passive viewing fMRI task.
Alternatively, behavior could be the output of only a high-quality
subset of the total neural population measured with fMRI. Both
possibilities could result in the slightly greater behavioral sensi-
tivity we observed in children compared with their neural sensi-
tivity and the weak relation between individual subject Weber
fractions in behavior and neural activity.
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Here, for the first time, we derived individual curves for neural
tuning in the right and the left IPS. Previously this had not been
done, even in adults, because when Weber fractions are calcu-
lated for each individual, those estimates compound idiosyn-
cratic differences in performance between the behavioral and
neural tasks, exaggerate the influence of data points that might
stray from a Gaussian shape, and generally add noise. Nonethe-
less, we observed both group-level and individual-level relations
between perceptual and neural tuning curves in the youngest
sample of children tested to date and a significant relation be-
tween behavioral and neural sensitivity to numerosity. Specifi-
cally, children’s right IPS neural Weber fractions predicted their
behavioral Weber fractions. This provides some of the first evi-
dence of a direct relation between neural and perceptual tuning
and suggests that even though there may be differences between
the perceptual Weber fraction and neural Weber fractions (De-
haene, 2007), they are related, albeit weakly, in early childhood.

Finally, we observed developmental continuity in the “distrib-
uted and overlapping” pattern of activation to number and
brightness previously observed in the adult parietal cortex (Pinel
et al., 2004). As in adults, children recruited bilateral regions of
parietal and occipital cortices for number and brightness detec-
tion. Regions of the anterior IPS exhibited a bias for numerosity
processing whereas the posterior IPS exhibited a bias for color
and brightness processing. These findings from children parallel
the distribution of neural responses from number and brightness
in the study of adults (Pinel et al., 2004). We further showed that
regions of the anterior IPS that exhibit neural tuning to numer-
osity do not exhibit tuning to brightness in children, and our
positive control analysis showed that color-preferring regions of
the posterior IPS are tuned to brightness but not numerosity.
Thus, like adults, children’s representations of number and
brightness can be segregated in the cortex. These findings indicate
that young children possess distinct mechanisms for representing
numerosity.

Together, our results show that (1) approximate cardinal tun-
ing to numerosity emerges in the right IPS by 3—4 years of age, (2)
the laws of neural tuning to numerosity parallel the laws of per-
ceptual tuning in the right IPS, and (3) the precision of children’s
neural tuning predicts their perceptual sensitivity to numerosity.
These data support the conclusion that there is developmental
continuity in the neural representation of cardinal numerosities
over development, and that the right IPS underlies early develop-
ment of numerical perception.
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